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 INTERNATIONAL ECONOMIC REVIEW
 Vol. 24, No. 1, February, 1983

 LIMITS ON POPULATION GROWTH UNDER

 EXHAUSTIBLE RESOURCE CONSTRAINTS*

 BY TAPAN MITRA'

 1. INTRODUCTION

 This paper is concerned with the following question: what patterns of population

 growth2 are consistent with the attainment of some well-known social objectives,

 in the presence of exhaustible resource constraints?

 In the literature on economic growth, with exhaustible resources as essential

 inputs in production, exogenous population is treated as either exponentially

 growing (see, for example, Solow [1974], Stiglitz [1974], Ingham and Simmons

 [1975]), or stationary (see Solow [1974], Stiglitz [1974], Dasgupta and Heal

 [1979]). Now, the first formulation (in the absence of technical progress) leads

 to problems right away, since per-capita consumption for every feasible program

 converges to zero (see Solow [1974], p. 40). Also, with a Classical Utilitarian

 objective, it leads to the non-existence of an optimal program (Ingham and

 Simmons [1975]). Thus the second formulation is found to be the more prevalent

 set-up.

 Solow sums up this position as follows: "The convention of exponential

 population growth makes excellent sense as an approximation so long as popu-

 lation is well below its limit. On a time-scale appropriate to finite resources,

 however, exponential growth of population is an inappropriate idealization. But

 then we might as well treat the population as constant," (see Solow [1974], p. 36).

 For reasons mentioned above, anyone who tries to formulate a growth model

 with exhaustible resources in an interesting way will fully appreciate this position.

 However, the last statement in the passage does seem to be somewhat abrupt,

 unless one believes that (say, for biological reasons) if population grows at all,

 it must do so exponentially!

 It does seem to me to be worthwhile to explore, in a more systematic way,

 the exact limits on population growth under exhaustible resource constraints.

 When I am done, I hope to demonstrate, as a by-product, the special significance
 of an economy with zero population growth.

 155

 * Manuscript received August 10, 1980; revised February 4, 1982.

 l Research leading to this paper was partially supported by a National Science Foundation

 Grant, and an Alfred P. Sloan Research Fellowship.

 2 It should be noted that the problem is not to find an optimum population policy, treating

 population, or its growth rate, as a control variable. Rather, population is exogenously given,
 and the problem is to determine precisely what population profiles are consistent (or incon-

 sistent) with an economy's welfare objectives. The problem of optimum population policies,
 with exhaustible resource constraints, is treated in papers by Koopmans [1974], Lane [1977], and

 Dasgupta and Mitra [1980].
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 156 T. MITRA

 In Sections 3 and 4, the paper examines the constraints that must be imposed

 on population growth, in order to attain the following two welfare objectives.

 One is the attainment of a non-trivial "maximin" program (for a definition, see

 Section 2). The other is the attainment of an "optimal" program in the Classical

 Utilitarian sense. More precisely, the paper obtains conditions on the production

 function, the utility function (in the "optimality" exercise) and the pattern of

 population growth which are sufficient for the existence of a non-trivial maximin

 program, and for the existence of an optimal program. Furthermore, parallel

 necessary conditions for the existence of non-trivial maximin and optimal pro-
 grams are obtained, which are "close to" the sufficient conditions mentioned

 above. Thus, the results might be viewed as an "almost" complete answer to
 the question posed in the first paragraph of this paper.

 As is to be expected, the necessary and sufficient conditions obtained for both

 welfare objectives, express the fact that population should not grow "too fast"

 (in a sense made precise in the statements of the theorems). The conditions are

 easily applicable to cases in which a pattern of population growth is parametrically

 specified, and this is demonstrated with some examples. These examples show

 that population growth in "quasi-arithmetic progression" (meaning that popu-

 lation at date t, Lt =(t + 1)2 for t10, with A >0) rather than "geometric progres-
 sion" can be perfectly consistent with the attainment of our welfare objectives.

 In Section 5, we examine two economies, which are identical in all respects

 except for their population growth patterns. If one economy always has at

 most as high a growth rate of population as the other, the first economy can

 enjoy at least as high a per-capita consumption level at each date as the second.

 As a result, we find that the first economy is at least as well-off as the second in

 terms of both the maximin and the optimality objective. This comparative

 dynamic exercise shows that, ceteris paribus, an economy with constant popu-

 lation (equal to the given initial population) is going to be at least as well-off as
 any other economy (with the same initial population) for which population is

 non-decreasing over time.

 2. THE MODEL

 Consider an economy with a technology given by a production function, G,
 from R3+ to R +. The production possibilities consist of capital input, K, exhaust-

 ible resource input, D, labor input, L, and current output, Z=G(K, D, L) for

 (K, D, L) 0.3

 Capital is non-depreciating, and the total output is Y= G(K, D, L) + K, for
 (K, D, L)>0. A total output function, F, can then be defined by

 (2.1) F(K, D, L) = G(K, D, L) + K for (K, D, L) > 0.

 3 For any two vectors, x and y, in RN, x?y means xi?yi for i=. N; x>y means x?y
 and xVzy; x?y means xi>yi for i=l,..., N.
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 LIMITS ON POPULATION GROWTH 157

 The production function, G, is assumed to satisfy:

 (A.1) G is concave, homogeneous of degree one, and continuously differentiable
 for (K, D, L)>>0.

 (A.2) (GK, GD, GL)>>O for (K, D, L)>>0.

 The initial capital input, K, and the initial available stock of the exhaustible

 resource, S, are considered to be historically given, and positive. The available

 labor force (considered identical to "population"), Lt, is exogenously given at

 each date, and satisfies

 (2.2) Lo = L, Lt+ 1 > Lt for t > 0, sup [Lt+ +/LI] < oo.
 t2O

 A feasible program is a sequence <K, D, L, Y, C>=<Kt, Dt, L,, Yt+1, Ct+1>
 satisfying

 Ko = K,g Dt _ S, Lt = Lt for t > 0
 t=O

 (2.3) Yt+I = F(Kt, Dt, Lt), Ct+1 = Yt+- Kt+1 for t > 0

 (Kt, Dt, Lt, Yt+I Ct+1) ?0 for t ?0.

 Associated with a feasible program <K, D, L, Y, C> is a sequence of resource

 stocks <S>=<St>, given by

 (2.4) SO = S, S+1 = St -D, for t > 0.

 By (2.3), St?0 and St+1<St for t20. A feasible program <K, D, L, Y, C> is
 interior if (Kt, Dt)>>O for t>0. It is regular interior if (Kt, Dt, Ct+1)>>O for
 t>0.

 Given a feasible program <K, D, L, Y, C>, we denote

 (2.5) kt = (Kt/Lt), dt = (Dt/Lt), gt+1 = (Lt+1/Lt) for t > 0
 Yt+ I = (Yt+ /lLt + c) ct+ 1 = (Ct+ /lLt+ 1) for t 2 0.

 A feasible program <K, D, L, Y, C> can maintain a positive per-capita con-
 sumption level if

 (2.6) inf et > 0.
 t21

 It is equitable if

 (2.7) et = ct+1 for t > 1.

 It is a non-trivial equitable program if it is equitable, and can maintain a positive

 per-capita consumption level. It is a maximin program if

 (2.8) inf e, > inf ct
 t21 t21

 for every feasible program <K, D, L, Y, C>. It is a non-trivial maximin program
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 158 T. MITRA

 if it is a maximin program and can maintain a positive per-capita consumption

 level.

 Felicity from consumption is obtained, according to a utility function, u,

 from R+ to R. The utility function is assumed to have the following properties:

 (A.3) u(c) is increasing in cfor c>O.

 (A.4) u(c) is concave and continuous for c?O, and continuously differentiable
 for c>O.

 (A.5) u'(c)-+oo as c-+O.

 A feasible program <K*, D*, L*, Y*, C*> is optimal if

 (2.9) lim sup E [L,u(c,) - L*u(c*)] < 0
 T- or t=1

 for every feasible program <K, D, L, Y, C>.

 3. THE MAXIMIN OBJECTIVE

 The problem I will address in this section is to find necessary and sufficient

 conditions on the sequence <Kt> and the function G, such that there will exist a
 non-trivial maximin program.

 A necessary condition for the existence of a non-trivial maximin program is the

 existence of a feasible program which can maintain a positive per-capita con-
 sumption level. Given our assumptions, it also turns out to be sufficient. Thus,

 the basic problem may be stated as follows: find necessary and sufficient conditions

 on the sequence <Lt> and function G, such that there will exist a feasible program
 which can maintain a positive per-capita consumption level.

 The existence of a non-trivial maximin program also implies the existence of

 an efficient equitable program. Thus, once the basic problem (posed in the preced-
 ing paragraph) is solved, we will know the conditions under wllich the objectives

 of efficient allocation of resources and that of intergenerational equity do not
 conflict.

 In order to obtain precise limitations on population growth, we have to specify

 the production function, G, in parametric form. Following Solow [1974],

 Stiglitz [1974] and others, I will assume that G is Cobb-Douglas:

 (A) G(K, D, L) = KIDILY, (a, f,, y) >> O, as+,B+y= 1.

 Given (A), (A.1) and (A.2) are clearly satisfied.
 In a model of growth with exhaustible resources, the Cobb-Douglas or something

 "close to it" asymptotically, is often found to be the only really interesting case.
 For an elaboration of this point, see Solow [1974, p. 34].

 My choice of (A) is, however, more for technical reasons. Even with (A),
 the answer to the problem I have posed is sufficiently involved, since we have

 imposed no parametric structure on the population path <Lt>. An alternative
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 LIMITS ON POPULATION GROWTH 159

 route could be to place some parametric structure on <L,> (say, assume that
 Lt=(t+1)- with A?0), while keeping the production function, G, of a general
 form, given by (A.1) and (A.2).

 My choice of the first route is a matter of taste. That is, I am more interested

 in finding the limitations on population growth, given a certain reasonable para-

 metric technological structure, than in determining the technological requirements,
 given an ad hoc parametric population path structure.

 Of course, the general problem is as I have posed it at the beginning of this

 section, with no parametric structure on either G or the sequence <Lt>. I doubt
 very much that the general problem can be solved as precisely as I have been able

 to solve the particular case. However, this is certainly an interesting open
 question.

 Given (A), I will denote [y/(l - f)] by 0; [a/(1 - f)] by (; [(1 -fl)/(1 - x)] by

 ,u; [(x-fl)/(1 -a)] by v; sup [Lt+1/L] by M; E Lo by At. For O<e<o<, denote
 t20 s=0

 (ce-e) by a, (3+?e) by b; [(1-b)/(1-a)] by m; [(a-b)/(1-a)] by n.

 LEMMA 3.1. Under (A), and ca>f3, if e is a number such that O<e<cL, and

 a>b, then there is a feasible program <K, D, L, Y, C> and a scalar E>O stich
 that

 (3.1) Ct+1 2 E(An/LI) for t > 0.

 PROOF. Choose 0 > 0, with 0 sufficiently close to zero to ensure that

 (3.2) e(1-a) + e(1-b) ? 0(1-a)b.

 Clearly, this can be done. Then, it can be verified that

 (3.3) mt - (1+0)fl 2 n.

 Denote [LO/A(1+?4)] by H, for t>O. Then, by the Abel-Dini Theorem (see
 00

 Knopp [1964, p. 299]), E Ht < oo. Define B b=2m(1+M)nMO. Choose h>O,
 t=O

 such that

 a)

 (3.4) E hBHt = S.
 t=O

 Define h=minL 2 h, K].
 Define a sequence <K, D, L, Y, C> as follows: Lt=Lt for t0; Ko=K, Kt=

 hAm for t 2 1; D = hBHt for t > 0; Yt+ 1 = G(Kt, Dt, Lt)+ Kt, Ct+ 1 = Yt+ 1-Kt+ 1
 for t ? 0. The sequence <K, D, L, Y, C> will be a feasible program, if we can show
 that Ct+10 for t?0.

 For t>0, G(Kt, Dt, Lt) = h,,AmahflBflH#LY = h(a+fl)BflAtima-(1+)[LmO > h(a+l)L
 BfAnLO [by (3.3)] ?hB'AnLO (since O<oc+fl<1 and O<h<1). Now, for
 t>O, (Kt + 1-Kt) < hAm 1-hAtm < hmAtn+ LO . For t ? O, we have

 [At+llAt] = 1 + [LO+1/AJ < [1+M].
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 160 T. MITRA

 So (K,+ 1-K,) < hn(l + M)nAnMoLo A L. Therefore, C,+ 1> hB A,'L?

 for t>0, and <K, D, L, Y, C> is a feasible program. Also, (C, 1/Lt+1)>
 hBb(A n/L6)(1/2M) for t>0, so clhoosing E=(hBb/2M), (3.1) is satisfied. Q.E. D.

 PROPOSITION 3.14. Under (A), there exists a feasible program which can

 maintain a positive per-capita consumption level if

 (3.5a) (i) ox>f

 (3.5b) (ii) sup [L,5/A v-1]<oo for some E>0.
 t2O

 PROOF. Clioose 0 < e < ot, with e sufficiently close to zero, to ensure that a > b,

 and n>v-E. By Lemma 3.1, there is a feasible program <K, D, L, Y, C> and

 a scalar E>0, such that (3.1) holds. Since n>v-E, so by (3.5b), inf(A,'/L,))>0,
 t2O

 and so infc,+ 1 >0. Q. E. D.
 t2O

 LEMMA 3.2. Under (A), if <K, D, L, Y, C> is a feasible progranm, then there
 is a scalar 0< V< oo, stuch that

 (3.6) K, < VAu1 for t > 0.

 PROOF. Consider the pure acctimulation program <K, D-, L, , C> given by
 KO = K, K,+ 1 = Kt + G(K, Dt, Lt) for t > O; L,=L D= D for t t;Y,+l= t+1,
 C,+ 0= for t>0. Then, for t>0,

 (3.7) - = K ,XD Lt.

 Since Kt+ 1 > Kt, so (3.7) yields

 (3.8) K - K_ - [kI+ K-t,K]/kz D PLt.
 Writing L' as [L,0](1-P), and using Holder's inequality in (3.8), we get for T>O0

 T T

 R1+1-go x<[ E ~~~~~~~~~~Dtp -#]( )<SPA('- P). Hence, LOIVR +:A1P T+1 0 1~~~ Y.__ ___Y.___T__- 0

 for t > 0. So, there is a number 0 < V< oo, such that for t > 0,

 (3.9) Kt < VA[0-#)1(1-x)1 = VAu
 Clearly, Kt < R, for t > 0, so Kt < VAn for t > 0. Q. E. D

 4 It is possible to show that the following alternative set of conditions are also sufficient for
 the existence of a feasible program maintaining a positive per-capita consumption level:

 (i) ->Q(,

 00

 where Q,= L. fort?0.
 s=0

 However, it is not known whether these conditions (or even something "close to" these condi-
 tions) are necessary for the existence of a feasible program maintaining a positive per-capita
 consumption level.
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 LIMITS ON POPULATION GROWTH 161

 LEMMA 3.3. Under (A), if there is an efficient program <K, D, L, Y, C>,
 such that c1 > 0, and ct+ 1 _ ct for t ? 1, then

 (i) ct? 1 < ktdf for t?0, and
 (ii) c >/,.

 PROOF. By the proof of Proposition 3.2 of Dasgupta and Mitra [1979],

 <K, D, L, Y, C> is interior. Then, by Proposition 3.1 and Theorem 4.1 in
 Mitra [1978],

 (3.10) GDt = GDtFKt+ I for t > 0.
 I claim now that for t > 0O

 (3 .1 1) ct < ktadg

 Suppose, on the contrary, there is some t = z for which c + > kad then cl+l=
 k,xdf + ?, where ? > 0. Note that, by feasibility,

 (3.12) - t+ -kt < gt+1kt+1 -kt = ktad -

 Now, gr+ 1cs+ 1 cl + 1 = o dfl + ?X SO by (3.12), k1 < k -? < kr. Using (3.10), we
 have GDt+? >GDt, so that

 (3.13) (k0+1/kt) ? (dtlz/dl-) for t ? 0.

 Since k?1+l<kr, so dr+?<dl by (3.13). Hence, ka+ld 1 <kxdg, and so,
 gl+2Cr+2> cr+22cl+i=k,xd +?>k dfl +?. Hence, by (3.12), kr+2<kl+ 1-
 E. Continuing this procedure for each succeeding period,

 (3.14) kt+1 <kt- for t>T.
 But (3.14) implies kt<O for large t, a contradiction. This establishes the claim
 made in (3.11), and proves (i).

 By (i), we have for t> ,0

 (3.15) KxDPLtY > cj1Lt.
 By Lemma 3.2, we know that (3.6) holds. Using this in (3.15), we have, for

 t>0,

 (3.1t6) Dt c (1)L(1 - Y) ]/V (x A (,x-u

 Now, (1-y)/=o + ,B)/, > 1 > Y/C + Y) = Y/(1-fl) = 0. And [ocj/fl] = [oc(1-)/
 ,B(1-oc)]. So by (3.16),

 (3.17) Dt 2 [c('l/ V'fl)] [Lt/At( fl-

 Since E Dt< oo, so by the Abel-Dini theorem (see Knopp [1964, p. 299]),
 t=O

 [oc(1 - ,)/B(1 - c)] > 1, that is oc > fi, which proves (ii). Q. E. D.

 LEMMA 3.4. Under (A), and oc>fl, if <K, D, L, Y, C> is an interior efficient
 program, then there is a scalar E>0, such that
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 162 T. MITRA

 (3.18) kadg < E[Av/L6] for t > 0.

 PROOF. Since <K, D, L, Y, C> is interior and efficient, so by Theorem 4.1

 in Mitra [1978], [Kt/GD,]->O as t-xoo. That is, there is an integer T<oo, such
 that for t ? T, [Kt/GD,] < 1. Using this, we have for t> T

 (3.19) [Kt/GD ] = [K -xD1l-/L7] < 1.

 Now, (3.19) implies that, for t> T,

 (3.20) Dt < [LO/K( tI)].

 Hence, for t> T, using Lemma 3.2, and (3.20) G(Kt, Dt, Lt) =KaDL <
 KLxL(o0+?)/K(#fu) = K[( -)1(-#)]LO < V[(a-f)1(1-f)]AvLo (since oc> f). Thus, for

 t > T, we have,

 (3.2 1) kt dg < V[ap/1p][Atv/Lf.

 Since T< oo , it is possible to choose E>0, such that (3.18) holds. Q.E.D.

 PROPOSITION 3.2. Unider (A), if there is a feasible progranm W1hich can main-

 tain a positive per-capita consumption level, then

 (3.22a) (i) oc >,B

 and

 (3.22b) (ii) sup [L/Av] < oo.
 t2O

 PROOF. If there exists a feasible program <K*, D*, L*, Y*, C*> which can
 maintain a positive per-capita consumption level, then, clearly, there is an equitable

 program <K', D', L', Y', C'> with

 [CQL] = inf [C*/L*] > 0 for t > 1.
 t21

 Then, by Theorem 1 of Dasgupta and Mitra [1979], there is an efficient equitable

 program <K, D, L, Y, C> with ct=c1>0 for t>1.
 By Lemma 3.3, (3.22a) holds. Also, (3.11) holds. Hence, by Lemma 3.4,

 (3.18) holds. Combining (3.11) and (3.18), we have for t>O,

 (3.23) c1 < ct+1 < kxdf < E[Av/LL].

 It follows from (3.23) that (3.22b) holds. Q. E. D.

 Remark. It should be noted that the method of proof actually ensures a
 stronger result than stated in Proposition 3.2; namely, if there exists a feasible
 program which can maintain a positive per-capita consumption level, then

 (3.24a) (i )ao >,B

 and

 (3.24b) (ii) lim [L/Av] = 0.
 t ??0
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 LIMITS ON POPULATION GROWTH 163

 The weaker form is retained in Proposition 3.2, merely for comparability with

 Proposition 3.1.

 The importance of Propositions 3.1 and 3.2 in solving the problem addressed

 in this section is given in Theorem 3.1 and Corollary 3.1. The proofs are omitted,

 as a straightforward adaptation of the arguments used in Dasgupta and Mitra

 [1979, Theorem 1 and Corollary 1] is possible.

 THEOREM 3.1. Under (A), there exists and efficient equitable program if
 and only if there exists a feasible program which can maintain a positive per
 capita consumption level.

 COROLLARY 3.1. Under (A), a feasible program is an efficient equitable
 program if and only if it is a non-trivial maximin program.

 Solow [1974] and Stiglitz [1974] have already shown (albeit in a continuous time

 model) that if (A) holds and Lt = Lnt, where n> I., there exists a feasible program
 which can maintain a positive per-capita consumption level iff (i) o>,B, and (ii)
 n=1. This result also follows directly from our Propositions 3.1 and 3.2.5

 We now consider an example in which population grows to infinity over time,

 but still there exists a feasible program which can maintain a positive per capita

 consumption level.

 EXAMPLE 3.1. Consider that (A) holds, oc > fl, Lt = L(t + 1)-, and 0 < < (/fl)-
 1. (A numerical example would be the following: G(K, D, L)=K0 20D0 05L0 75;

 so oc=0.20>0.05=fl. Let Lt=L(t+ 1)2 for t>0; then A=2, so 0<A<(oc/,B)-1
 is satisfied, since 0<2<(0.20/0.05)-1=3). Then, clearly Lt--*co as t-*cOo.
 Also, by Proposition 3.1, there exists a feasible program which can maintain a

 positive per-capita consumption level.6 (Note that the numerical example we

 have given draws upon empirical evidence reported in Dasgupta and Heal [1979,

 p. 205 and p. 243].

 4. THE UTILITARIAN OBJECTIVE

 In this section, I will obtain necessary and sufficient conditions on the produc-

 tion function G, the utility function u, and the sequence <L,>, such that there
 will exist an optimal program, in the Classical Utilitarian sense.

 For this purpose, I will retain assumption (A) on G, and use the following

 parametric form of u:

 5 When n= 1, and G does not necessarily satisfy (A), (that is, G is a general neoclassical pro-

 duction function), the necessary and sufficient conditions for the existence of a feasible program

 maintaining a positive per-capita consumption level, are obtained by Cass and Mitra [1979].

 6 Consider that (A) holds, and L,=L(t+l)A, where >0. We note that by Proposition 3.2,
 if there exists a feasible program which can maintain a positive per-capita consumption level,

 then ?<(al/j)-I. Moreover, by using (3.24a) and (3.24b), one can get the more satisfactory
 result that "2 < (al/) -1 " itself is necessary and sufficient for the existence of a feasible program
 which can maintain a positive per-capita consumption level.
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 164 T. MITRA

 (B) u(c) = -(1/c) where a> 0.

 Note that (B) clearly implies (A.3)-(A.5). Given (B), we will denote -u(c) by

 v(c).

 Given (A) and (B), the conditions obtained provide us with precise limitations

 on population growth (in relation to the production and utility specifications)
 to be consistent with the attainment of the utilitarian objective.

 PROPOSITION 4.1. Under (A), (B), there exists an optimal program if

 (4.1a) ( i) ox > ,B

 (4.1b) (ii) vo > 1

 and

 00 L(l+a
 (4.1c) (iii) E Z va- < oo for some ?

 t=0 t

 PROOF. By (4.1c), there is ?, satisfying vo> > 0. Let e denote (?/of); then
 v>?>0. Given (4.la) choose O<e<x, with e sufficiently close to zero, to ensure

 that a>b, and n>v-s.

 By Lemma 3.1, there is a feasible program <K, D, L, Y, C>, and a scalar E>0,
 such that (3.1) holds. Since n>v-, so

 (4.2) Ct?+ 2 E(At v /LI) for t > 0.

 Then, for t>O, Lt+ 1v(ct+ ,) = (Lt+ 1/Lt)Ltv(ct+ ) < MLt[LalEaA v-8a]<(M/Ea)-
 [Lt(1+5a)1Aav E].
 Then, by (4.1c),

 00

 (4.3) E Lt+ lv(ct+ 1) < o??
 t=O

 Then, by Brock and Gale [1969, Lemma 2], there exists an optimal program.
 Q.E.D.

 PROPOSITION 4.2. Under (A), (B), if there exists an optimal program, then

 (4.4a) ( i) ox > ,B

 (4.4b) (ii) va > 1

 and

 (4.4 c) (iii) E, t va < ??.
 t=o t

 PROOF. Suppose there is an optimal program, call it <K, D, L, Y, C>.

 Then, for each t> 1, the expression Ltu{[F(Kt_1, Dt_1, Lt_1)-K]/Lt} +
 Lt+1u{[F(K, Dt, Lt)-Kt+1]/Lt+1} must be a maximum at K=Kt. By (A), (B),
 the maximum must be at an interior point; that is (Ct+1, Kt, Dt)>>O for t?0.
 So,
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 LIMITS ON POPULATION GROWTH 165

 (4.5) u'(c,) = u'(ct+ )FK, for t > 1.

 Also, for each t2 1, and for O<D<D-1 +DD, the expression L,u{[F(Kt_, D,
 Lt 1)-Kt]/Lt} ?L+ 1ut{j[F(Kt, Dt-1 +Dt-D, Lt)-Kt+ 1]/Lt+ l} must be a max-
 imum at D = Dt. Since the maximum is at an interior point, so

 (4.6) u'(ct)FD,-, = u'(ct+ )FD, for t ? 1.
 Define a sequence <p, q> in the following way:

 (4.7) {Po = u'(cl)FkO; Pt = U'(Ct) for t > 1
 qt = u'(c1)FD, for t ? 0.

 Note that by (4.6), (4.7),

 (4.8) Pt+1 = [qO/FD,] for t > 0.

 By (4.5), u(ct)?"u'(ct+1), so Ct+1?Ct for t>0. Hence, by Lemma 3.3 [using
 the fact that <K, D, L, Y, C> is efficient], (4.4a) holds, and

 (4.9) ct+1 < ktd' for t > 0.

 Using (4.8) and Corollary 4.1 in Mitra [1978],

 00

 (4.10) E Pt+lCt+1 < ??.
 t=o

 Using (4.7) in (4.10),

 00

 (4.11) E Ltu'(Ct)Ct < ao.
 t=1

 Using (B), u'(c)c = SC-a = ov(c) for c > 0.

 Hence, by (4.11), we have (since Lt +l Lt for t>0)

 (4.12) ELtv(ct +1) < oo
 t=1

 By (4.9), and (3.18) [using Lemma 3.4],

 (4.13) ct+1 < E[Av/LI] for t ? 0.

 Using (4.13) in (4.12), we have

 oo L (1 +,5 )
 (4.14) < t00 .

 Now, (4.4c) follows directly from (4.14). Since (1 + ob))> 1>0, so (4.4c) implies
 by the Abel-Dini Theorem, that vu> 1, which establishes (4.4b). Q. E. D.

 Remark.7 Note that if an optimal program exists, then the period social wel-

 7 Given the technique of analysis in Sections 3 and 4, it should be fairly clear how technical

 (Continued on next page)
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 fares [L,u(c,)] are summable, by (4.12). We will use this fact later, in Section 5.
 Solow [1974] and Dasgupta and Heal [1979] have shown (in a continluous time

 model) that if (A) and (B) hold, and L,=Lnt, where n ? 1, there exists an optimal
 program iff (i) >,fl, (ii) n= I, and (iii) vo> 1. This result also folhows
 directly from our Propositionis 4.1 and 4.2.

 We now consider an example in which popLlationi grows to iinfinity over time,
 and still there exists an optimal program.

 EXAMPLE 4.1. Consider that (A), (B) ho'd, a> fl, vr> , L=L(t+l))A, and
 0 <)i < [uc/(l-x + ?,Bu)] - 1. {A numerical example would be the following:

 G(K, D, L)=KO 20D0O05L0 75; u(c)= -(l/c24); L,=L(?+ 1). Then a=0.20>
 0.05=,; ai = 24, v = (3/16), so Ia =(9/2) > 1; [cx/( I - x + /3a)] =(4.8/2) = 2.4; i =1.
 Since 0<1<2.4-1, so i. satisfies the inequality 0 <Oi < [ou/(l -x? + /)]-1.}
 Then, it follows from Proposition 4.1, that there exists an optimal program.8

 Note also that Lt-+oo as t-,oo, since X>0.

 5. A COMPARATIVE DYNAMIC EXERCISE

 Consider two economies, with the same production fuLnction specified by (A),
 and the same utility function specified by (B). The two economies have the same

 initial stocks of capital, labor and exhaulstible resource, K, L, S. The population
 paths of both economies satisfy the restrictions giveni by (2.2). The difference
 between the two economies is that the growth rate of populationl in the first is

 always at most as high as that in the second. Can we then say, in somne precise
 sense, that the first economy is at least as well off as the second? This is the subiect

 matter of this section.

 Let us denote the variables of the first economy with a superscript of 1, those

 of the second with a stuperscript of 2. Assu-me that

 (5.1) g1I1 < g2+1 for t > 0.
 We then have the following result.

 PROPOSITION 5.1. Under (A), if (5.1) holds, and <K2, D2, L2, y2, C2> is any
 feasible program for the second economly, thlere is a feasible program1 <K1, D',

 (Continued)

 progress (not necessarily exponential) can be handled in this framework. More precisely, our

 analysis could be used to answer a question of the following sort: "What patterns of population

 growth and technical progress are consistent with the attainment of some well-known social ob-

 jectives, in the presence of exhaustible resource constraints?" When both population growth
 and technical progress are exponential, such a question has been answered by Stiglitz [1974],
 and Mitra [1981].

 8 Suppose (A), (B) hold and L =L(t-t- 1), where 2 >0. It follows from Proposition 4.2,

 that if there exists an optimal program, then (i) a> 3, (ii) va> I, and (iii) 2<[gua/(I -a+ a o)]-1.
 This, together with our conclusion in Example 4.1, shows that conditions (i), (ii) and (iii) are
 necessary and sufficient conditions for the existence of an optimal program.
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 L', y', C'> for the first economy, with

 (5.2) c1+1 > c 1 for t > 0.

 PROOF. Define a sequence <K1, D', L', Y', Cl> as follows. Let LI=L for
 t>0; Kl=k 2L', D =D 2, Yl+1=F(Kl, DI, L1), Cl+1=Y'+1-Kl+1 for t>0.
 Then, for t>0,

 C1+1 = G(K1, D', Ll) +K - K-l+, or

 c +1 = L ) [G(kl, d', 1)+kl] -k+

 L [G(kI , dl ])+kt] t-

 2 k{ g2, d2, )+k2--- _ kk2

 = ct2+1?20O

 Hence, <K1, D1, LI, Yl, C'> is a feasible program for the first economy.
 Furtherimore, (5.2) is clearly satisfied. Q. E. D.

 Suppose, now, that for each economy a non-trivial maximin program and
 an optimal program exist. We denote by WI the maximin per-capita consump-

 tion level, and by WI the sum of per-period social welfares on the optimal pro-

 gram, for the first economy. The corresponding magnitudes of the second

 economy are W2 and Wi.

 PROPOSITION 5.2. Under (A), (B), if (5.1) holds, then

 (i) WM > WM,
 and

 (ii) Wl ? Wu.

 PROOF. That (i) is true follows trivially from Proposition 5.1. To prove (ii),

 note that L 2>L1 for t>0, by (5.1). If <K2, D2, E2, V2, C2> is an optimal
 program for the second economy, then there is a feasible program <K1, D', L',
 y', C'> for the first economy, such that u(c)?u( c) for t? 1 (by Proposition 5.1).

 Since u(c)<O for c>O, so Llu(cl) 2 c 2 c for t>2O. Consequently,
 if <K1, D1, L', Y', C'> is an optimal program for the first economy,

 00 _00

 ELtlu(c-t') >2 L2 tU ( 2).
 t=l t=1

 This establishes (ii). Q. E. D.

 Cornell University, U.S.A.
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